Size : 10mg
Request more information
Please log in to use this feature.
JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.
Ki = 2 nM
galacto-Dapagliflozin is a potent inhibitor of human SGLT2.
Renal glucose transport is mediated by sodium-glucose cotransporters (SGLT) 1 and 2. In humans, SGLT2 is responsible for the majority of glucose reabsorption in the kidney.
In vitro: It was found that galacto-dapagliflozin was a selective inhibitor of hSGLT2, but was less potent than dapagliflozin for both transporters. Both phlorizin and galacto-dapagliflozin rapidly dissociated from SGLT2, while dapagliflozin and fluoro-dapagliflozin dissociated from hSGLT2 at a rate 10-fold slower. Dapagliflozin, fluoro-dapagliflozin, and galacto-dapagliflozin dissociated quickly from hSGLT1, and phlorizin readily exchanged with dapagliflozin bound to hSGLT1 [1].
In vivo: Male db/db mice were administered dapagliflozin for 12 weeks. Results showed that administration of dapagliflozin could ameliorate hyperglycemia, β-cell damage and albuminuria in db/db mice. Serum creatinine, creatinine clearance and blood pressure were not affected by administration of dapagliflozin. Dapagliflozin treatment was able to decrease macrophage infiltration in the kidney of db/db mice [2].
Clinical trial: Previous clinical study found that lowering the plasma glucose concentration with dapagliflozin could markedly improve β-cell function, which provided strong support for the glucotoxic effect of hyperglycemia on β-cell function [3].
References:[1] Hummel, C. S.,Lu, C.,Liu, J., et al. Structural selectivity of human SGLT inhibitors. American Journal of Physiology.Cell Physiology 302(2), C373-C382 (2012).[2] Terami N et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One. 2014 Jun 24;9(6):e100777. [3] Merovci A et al. Dapagliflozin lowers plasma glucose concentration and improves β-cell function. J Clin Endocrinol Metab. 2015 May;100(5):1927-32.