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HeLa/GFP Cell Line 

 

 

CATALOG NUMBER: AKR-213    

 

STORAGE: Liquid nitrogen   

Note: For best results begin culture of cells immediately upon receipt. If 

this is not possible, store at -80ºC until first culture. Store subsequent 

cultured cells long term in liquid nitrogen. 

  

QUANTITY & CONCENTRATION: 1 mL, 1 x 106 cells/mL in 70% DMEM, 20% FBS, 10% DMSO   

 

Background 

HeLa cells are the most widely used cancer cell lines in the world.  These cells were taken from a lady 

called Henrietta Lacks from her cancerous cervical tumor in 1951 which today is known as the HeLa 

cells.  These were the very first cell lines to survive outside the human body and grow.  Both GFP and 

blasticidin-resistant genes are introduced into parental HeLa cells using lentivirus. 

 

 
Figure 1. HeLa/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast. 

 

Quality Control 

This cryovial contains at least 1.0 × 106 HeLa/GFP cells as determined by morphology, trypan-blue dye 

exclusion, and viable cell count. The HeLa/GFP cells are tested free of microbial contamination. 

 

Medium  

1. Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM Non-

Essential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep, (optional) 10 µg/mL 

Blasticidin.  

2. Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO. 

 

Methods 

Establishing HeLa/GFP Cultures from Frozen Cells  

http://helacells.blogspot.com/
http://hubpages.com/hub/HeLa-cells


 
 

 

 

 

1. Place 10 mL of complete DMEM growth medium in a 50-mL conical tube.  Thaw the frozen 

cryovial of cells within 1–2 minutes by gentle agitation in a 37°C water bath.  Decontaminate the 

cryovial by wiping the surface of the vial with 70% (v/v) ethanol. 

2. Transfer the thawed cell suspension to the conical tube containing 10 ml of growth medium. 

3. Collect the cells by centrifugation at 1000 rpm for 5 minutes at room temperature.  Remove the 

growth medium by aspiration. 

4. Resuspend the cells in the conical tube in 15 mL of fresh growth medium by gently pipetting up 

and down.  

5. Transfer the 15 mL of cell suspension to a T-75 tissue culture flask. Place the cells in a 37°C 

incubator at 5% CO2. 

6. Monitor cell density daily. Cells should be passaged when the culture reaches 95% confluence.  
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Warranty 
These products are warranted to perform as described in their labeling and in Cell Biolabs literature when used in accordance 

with their instructions.  THERE ARE NO WARRANTIES THAT EXTEND BEYOND THIS EXPRESSED WARRANTY 

AND CELL BIOLABS DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF 

FITNESS FOR PARTICULAR PURPOSE.  CELL BIOLABS’s sole obligation and purchaser’s exclusive remedy for breach 

of this warranty shall be, at the option of CELL BIOLABS, to repair or replace the products. In no event shall CELL 

BIOLABS be liable for any proximate, incidental or consequential damages in connection with the products. 

 

This product is for RESEARCH USE ONLY; not for use in diagnostic procedures. 
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Cell Biolabs, Inc. 
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